

Welcome to Syncurity SDK’s documentation!

[image: PyPI1] [image: PyPI2] [image: PyPI3]

irflow-sdk-python

A python client for Syncurity IR-Flow REST API

Installation

pip install irflow_client

Upgrade

pip install irflow_client --upgrade

Build from source

git clone git@github.com:Syncurity/irflow-sdk-python.git
pip install -e .

Contribute

Pull requests are always appreciated

Support

Please open an issue in github

Examples

To get started with examples, read the examples README. It includes two
sample python scripts that use the irflow_client.

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 irflow_client	

 	
 	
 irflow_client.irflow_client	

Index

 _
 | A
 | C
 | D
 | G
 | I
 | L
 | P
 | R
 | U

_

 	
 	__init__() (irflow_client.irflow_client.IRFlowClient method), [1]

 	_build_user_agent() (irflow_client.irflow_client.IRFlowClient static method), [1]

 	
 	_get_config_args_params() (irflow_client.irflow_client.IRFlowClient method), [1]

 	_get_config_file_params() (irflow_client.irflow_client.IRFlowClient method), [1]

A

 	
 	add_item_to_picklist() (irflow_client.irflow_client.IRFlowClient method), [1]

 	assign_user_to_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

 	
 	attach_alert_to_incident() (irflow_client.irflow_client.IRFlowClient method), [1]

 	attach_field_to_object_type() (irflow_client.irflow_client.IRFlowClient method), [1]

 	attach_incident_to_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

C

 	
 	close_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

 	create_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

 	
 	create_incident() (irflow_client.irflow_client.IRFlowClient method), [1]

 	create_object_type() (irflow_client.irflow_client.IRFlowClient method), [1]

 	create_picklist_item() (irflow_client.irflow_client.IRFlowClient method), [1]

D

 	
 	delete_picklist_item() (irflow_client.irflow_client.IRFlowClient method), [1]

 	download_attachment() (irflow_client.irflow_client.IRFlowClient method), [1]

 	download_attachment_string() (irflow_client.irflow_client.IRFlowClient method), [1]

 	
 	dump_request_debug_info() (irflow_client.irflow_client.IRFlowClient method), [1]

 	dump_response_debug_info() (irflow_client.irflow_client.IRFlowClient method), [1]

 	dump_settings() (irflow_client.irflow_client.IRFlowClient method), [1]

G

 	
 	get_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

 	get_fact_group() (irflow_client.irflow_client.IRFlowClient method), [1]

 	get_field_by_name() (irflow_client.irflow_client.IRFlowClient static method), [1]

 	
 	get_incident() (irflow_client.irflow_client.IRFlowClient method), [1]

 	get_picklist() (irflow_client.irflow_client.IRFlowClient method), [1]

 	get_picklist_item() (irflow_client.irflow_client.IRFlowClient method), [1]

 	get_version() (irflow_client.irflow_client.IRFlowClient method), [1]

I

 	
 	irflow_client.irflow_client (module)

 	IRFlowClient (class in irflow_client.irflow_client), [1]

 	
 	IRFlowClientConfigError

 	IRFlowMaintenanceError

L

 	
 	list_picklist_items() (irflow_client.irflow_client.IRFlowClient method), [1]

 	
 	list_picklists() (irflow_client.irflow_client.IRFlowClient method), [1]

P

 	
 	put_fact_group() (irflow_client.irflow_client.IRFlowClient method), [1]

R

 	
 	restore_picklist_item() (irflow_client.irflow_client.IRFlowClient method), [1]

U

 	
 	update_incident() (irflow_client.irflow_client.IRFlowClient method), [1]

 	upload_attachment_to_alert() (irflow_client.irflow_client.IRFlowClient method), [1]

 	
 	upload_attachment_to_incident() (irflow_client.irflow_client.IRFlowClient method), [1]

 	upload_attachment_to_task() (irflow_client.irflow_client.IRFlowClient method), [1]

IR-Flow Client

Python SDK and Wrapper for the IR-Flow REST API

	
class irflow_client.irflow_client.IRFlowClient(config_args=None, config_file=None)

	Bases: object

Python SDK for the IR-Flow REST API.

	
__init__(config_args=None, config_file=None)

	Create an API Client instance

Creates API Client to IR-Flow API. Default timeout is 5 seconds on connect and
30 seconds on response.

	Parameters

	
	config_args (dict) – Key, Value pairs of IR-Flow API configuration options

	config_file (str) – Path to a valid Ir-Flow configuration file

	
static _build_user_agent()

	Builds the current version User-Agent String

	Returns

	user-agent

	Return type

	str

	
_get_config_args_params(config_args)

	Helper function to check/parse configuration arguments provided as a dict

	Parameters

	config_args (dict) – A dict of the following keys:

	Keys

	
	address (str) – IR-Flow Server FQDN or IP Address

	api_user (str) – IR-Flow API User

	api_key (str) – above user’s api key

	protocol (str) – https unless otherwise specified, default = HTTPS

	debug (bool) – enable debug output, default = None

	verbose (int) – turn up the verbosity default = 0 (optional)

	
_get_config_file_params(config_file)

	Helper function to parse configuration arguments from a valid IR-Flow configuration file

	Parameters

	config_file (str) – Path to a valid IR-Flow configuration file

	
add_item_to_picklist(picklist_id, value, label, description=None)

	
	Add an item with the provided value, label, and description to the picklist

	matching the provided ID

	Parameters

	
	picklist_id (int) – The IR-Flow assigned ID of the picklist to which the new item
should be added

	value (str) – The string value submitted to actions and integrations for this
picklist item

	label (str) – The label to be displayed for this picklist item

	description (str) – An optional description for this picklist item

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
assign_user_to_alert(alert_num, username)

	Assign a user to an Alert

	Parameters

	
	alert_num (int) – The IR-Flow Assigned Alert Number of the Alert to attach to the
specified incident

	username (string) – The IR-Flow User to assign to an alert

	Returns

	The full json response object returned by the IR-Flow API.

	Return type

	dict

	
attach_alert_to_incident(alert_num, incident_num)

	Attach the specified alert to the specified incident

	Parameters

	
	incident_num (int) – The Incident Number of the Incident to which the specified
alert should be attached

	alert_num (int) – The IR-Flow Assigned Alert Number of the Alert to attach to the
specified incident

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
attach_field_to_object_type(object_type_name, field_name, object_type_id=None, field_id=None)

	Attach an existing field to an object of the specified name or id

	Parameters

	
	object_type_name (str) – The string name of the object to which the specified field
should be added - required only if no object_type_id is provided

	field_name (str) – The string name of the field to be added to the specified object -
required only if no field_id is provided

	object_type_id (int) – The IR-Flow assigned ID of the object to which the specified field
should be added - required only if no object_type_name is provided

	field_id (int) – The IR-Flow assigned IF of the field to be added to the specified object
- required only if no field_name is provided

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
attach_incident_to_alert(incident_num, alert_num)

	Attach the specified alert to the specified incident

Note

This API endpoint will be deprecated in a future release.
You should use attach_alert_to_incident(), which accomplishes the same outcome,
and is how this would be done naturally in the interface.
No new code should use this function.

	Parameters

	
	incident_num (int) – The Incident Number of the Incident to which
the specified alert should be attached

	alert_num (int) – The IR-Flow Assigned Alert Number of the
Alert to attach to the specified incident

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
close_alert(alert_num, close_reason)

	Close the alert with the provided number, for the provided reason

	Parameters

	
	alert_num (int) – The IR-Flow assigned alert number of the alert to close

	close_reason (str) – The reason for which to close the desired alert

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
create_alert(alert_fields, description=None, incoming_field_group_name=None, suppress_missing_field_warning=False)

	Create an alert of the desired field group name with the specified fields and description

	Parameters

	
	alert_fields (dict) – Key, Value pairs of fields configured in IR-Flow and their values

	description (str) – An optional string description for the alert

	incoming_field_group_name (str) – The string name of the incoming
field group name for this alert as specified in IR-Flow

	suppress_missing_field_warning (bool) – Suppress the API warnings indicating
missing fields if True - defaults to False

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
create_incident(incident_type_name, incident_fields=None, incident_subtype_name=None, description=None, priority_id=None, owner_id=None)

	
	Create an incident of the desired type and subtype with the specified fields

	and description

	Parameters

	
	incident_type_name (str) – The string name of the incident type with which this
incident should be created

	incident_subtype_name (str) – The string name of the incident subtype with which
this incident should be created (optional)

	incident_fields (dict) – Key, Value pairs of fields configured in IR-Flow and
their values (optional)

	description (str) – An optional string description for the incident

	priority_id (str) – ID of the priority to set

	owner_id (str) – ID of the user to set incident owner to

	
create_object_type(type_name, type_label, parent_type_name=None, parent_type_id=None)

	Create an object type of the provided parent type or id with the provided name and label

	Parameters

	
	type_name (str) – The string name for this object type

	type_label (str) – The label for this object type

	parent_type_name (str) – The string name of the parent object type -
required if no parent_type_id is specified

	parent_type_id (int) – The id of the parent object type - required if no
parent_type_name is specified

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
create_picklist_item(picklist_id, value, label, description=None)

	Create a new item in a specified picklist

	Parameters

	
	picklist_id (int) – The IR-Flow assigned ID of the picklist to which the new item
should be added

	value (str) – The string value submitted to actions and integrations for this
picklist item

	label (str) – The label to be displayed for this picklist item

	description (str) – An optional description for this picklist item

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
delete_picklist_item(picklist_item_id)

	Mark a picklist item as deleted

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be deleted

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
download_attachment(attachment_id, attachment_output_file)

	Download the attachment with the specified ID

	Parameters

	
	attachment_id (int) – The ID of the attachment to be downloaded

	attachment_output_file (str) – The full path to the file on disk
to which the desired attachment should be saved

	
download_attachment_string(attachment_id)

	Download an attachment and return it as text

	Parameters

	attachment_id (int) – The ID of the attachment to be downloaded

	Returns

	The textual contents of the downloaded file

	Return type

	str

	
dump_request_debug_info(heading, url, headers=None, data=None, params=None)

	Helper function to dump request info to the debug stream on the logging bus

	Parameters

	
	heading (str) – A string heading for the debug message - typically the name of the
endpoint being queried

	url (str) – The full url of the API endpoint

	headers (dict) – The headers of this request, if desired

	data (dict) – Key, Value pairs of data in the body of a request, if desired

	params (dict) – Key, Value pairs of parameters passed in a request, if desired

	
dump_response_debug_info(heading, status, json)

	
	Helper function to dump response info from a request to the debug stream

	on the logging bus

	Parameters

	
	heading (str) – A string heading for the debug message, the word
‘Response’ will be appended

	status (int) – The HTTP response code of the previously made request

	json (dict) – The full json response body as returned by the IR-Flow API

	
dump_settings()

	Helper function to print configuration information

	
get_alert(alert_num)

	Retrieve the alert with the specified alert number

	Parameters

	alert_num (int) – The IR-Flow assigned alert number of the alert to retrieve

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_fact_group(fact_group_id)

	Retrieve the current data in the specified fact group

	Parameters

	fact_group_id (int) – The IR-Flow assigned IF of the fact_group to retrieve

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
static get_field_by_name(field_name, field_list)

	Helper function to return a field via a string name match given a field and field list

	Parameters

	
	field_name (str) – The string name of the desired field

	field_list (list) – A list of field objects

	Returns

	The field object if found, None otherwise

	Return type

	dict

	
get_incident(incident_num)

	Retrieve the incident with the specified ID

	Parameters

	incident_num (int) – The IR-Flow assigned ID of the incident to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_picklist(picklist_id)

	Retrieve the picklist with the desired ID

	Parameters

	picklist_id (int) – The IR-Flow assigned id of the picklist to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_picklist_item(picklist_item_id)

	Retrieve the picklist item corresponding to the specified ID

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_version()

	Function to get Current IR-Flow Version

	Returns

	
	IR-Flow Version Number

	Example: 4.6.0

	Return type

	str

	
list_picklist_items(picklist_id, with_trashed=False, only_trashed=False)

	Retrieve a list of all picklist items in a specified list

	Parameters

	
	picklist_id (int) – The IR-Flow Assigned ID of the picklist whose items to list

	with_trashed (bool) – Include deleted items - False by default

	only_trashed (bool) – Only list deleted items - False by default

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
list_picklists(with_trashed=False, only_trashed=False)

	List all picklists

	Parameters

	
	with_trashed (bool) – Include deleted picklists - False by default

	only_trashed (bool) – List only deleted picklists - False by default

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
put_fact_group(fact_group_id, fact_data)

	Put new or updated fact data in the specified fact group

	Parameters

	
	fact_group_id (int) – The IR-Flow assigned ID of the fact_group to be updated

	fact_data (dict) – Key, Value pairs of fact fields as specified
in IR-Flow and their values

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
restore_picklist_item(picklist_item_id)

	Restore a previously deleted picklist item

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be restored

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
update_incident(incident_num, incident_fields, incident_type_name, owner_id, group_ids, incident_subtype_name=None, description=None, priority_id=None)

	
	Update the incident of the provided number, type, and subtype with the provided

	fields and description

	Parameters

	
	incident_num (int) – The IR-Flow assigned ID of the incident to update

	incident_fields (dict) – Key, Value pairs of fields configured in IR-Flow
and their values

	incident_type_name (str) – The string name of the incident type of the desired incident

	owner_id (int) – The id of the user that will own this incident

	group_ids (list of int) – The ids of the groups this incident will belong to.

	incident_subtype_name (str) – The string name of the incident subtype of the desired
incident (optional)

	description (str) – An optional string description for the incident

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
upload_attachment_to_alert(alert_num, filename)

	Upload an attachment to the specified alert

	Parameters

	
	alert_num (int) – The IR-Flow Assigned Alert number of the
Alert to which the desired filed should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
upload_attachment_to_incident(incident_id, filename)

	Upload an attachment to the specified incident

	Parameters

	
	incident_id (int) – The ID of the Incident to which the desired file should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
upload_attachment_to_task(task_id, filename)

	Upload an attachment to the specified task

	Parameters

	
	task_id (int) – The ID of the task to which the desired file should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
exception irflow_client.irflow_client.IRFlowClientConfigError

	Bases: Exception

Raised on Config Errors

	
exception irflow_client.irflow_client.IRFlowMaintenanceError

	Bases: Exception

Raised on HTTP 503 from IR-Flow App, likely being upgraded.

	
class irflow_client.irflow_client.IRFlowClient(config_args=None, config_file=None)

	Bases: object

Python SDK for the IR-Flow REST API.

	
__init__(config_args=None, config_file=None)

	Create an API Client instance

Creates API Client to IR-Flow API. Default timeout is 5 seconds on connect and
30 seconds on response.

	Parameters

	
	config_args (dict) – Key, Value pairs of IR-Flow API configuration options

	config_file (str) – Path to a valid Ir-Flow configuration file

	
static _build_user_agent()

	Builds the current version User-Agent String

	Returns

	user-agent

	Return type

	str

	
_get_config_args_params(config_args)

	Helper function to check/parse configuration arguments provided as a dict

	Parameters

	config_args (dict) – A dict of the following keys:

	Keys

	
	address (str) – IR-Flow Server FQDN or IP Address

	api_user (str) – IR-Flow API User

	api_key (str) – above user’s api key

	protocol (str) – https unless otherwise specified, default = HTTPS

	debug (bool) – enable debug output, default = None

	verbose (int) – turn up the verbosity default = 0 (optional)

	
_get_config_file_params(config_file)

	Helper function to parse configuration arguments from a valid IR-Flow configuration file

	Parameters

	config_file (str) – Path to a valid IR-Flow configuration file

	
add_item_to_picklist(picklist_id, value, label, description=None)

	
	Add an item with the provided value, label, and description to the picklist

	matching the provided ID

	Parameters

	
	picklist_id (int) – The IR-Flow assigned ID of the picklist to which the new item
should be added

	value (str) – The string value submitted to actions and integrations for this
picklist item

	label (str) – The label to be displayed for this picklist item

	description (str) – An optional description for this picklist item

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
assign_user_to_alert(alert_num, username)

	Assign a user to an Alert

	Parameters

	
	alert_num (int) – The IR-Flow Assigned Alert Number of the Alert to attach to the
specified incident

	username (string) – The IR-Flow User to assign to an alert

	Returns

	The full json response object returned by the IR-Flow API.

	Return type

	dict

	
attach_alert_to_incident(alert_num, incident_num)

	Attach the specified alert to the specified incident

	Parameters

	
	incident_num (int) – The Incident Number of the Incident to which the specified
alert should be attached

	alert_num (int) – The IR-Flow Assigned Alert Number of the Alert to attach to the
specified incident

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
attach_field_to_object_type(object_type_name, field_name, object_type_id=None, field_id=None)

	Attach an existing field to an object of the specified name or id

	Parameters

	
	object_type_name (str) – The string name of the object to which the specified field
should be added - required only if no object_type_id is provided

	field_name (str) – The string name of the field to be added to the specified object -
required only if no field_id is provided

	object_type_id (int) – The IR-Flow assigned ID of the object to which the specified field
should be added - required only if no object_type_name is provided

	field_id (int) – The IR-Flow assigned IF of the field to be added to the specified object
- required only if no field_name is provided

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
attach_incident_to_alert(incident_num, alert_num)

	Attach the specified alert to the specified incident

Note

This API endpoint will be deprecated in a future release.
You should use attach_alert_to_incident(), which accomplishes the same outcome,
and is how this would be done naturally in the interface.
No new code should use this function.

	Parameters

	
	incident_num (int) – The Incident Number of the Incident to which
the specified alert should be attached

	alert_num (int) – The IR-Flow Assigned Alert Number of the
Alert to attach to the specified incident

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
close_alert(alert_num, close_reason)

	Close the alert with the provided number, for the provided reason

	Parameters

	
	alert_num (int) – The IR-Flow assigned alert number of the alert to close

	close_reason (str) – The reason for which to close the desired alert

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
create_alert(alert_fields, description=None, incoming_field_group_name=None, suppress_missing_field_warning=False)

	Create an alert of the desired field group name with the specified fields and description

	Parameters

	
	alert_fields (dict) – Key, Value pairs of fields configured in IR-Flow and their values

	description (str) – An optional string description for the alert

	incoming_field_group_name (str) – The string name of the incoming
field group name for this alert as specified in IR-Flow

	suppress_missing_field_warning (bool) – Suppress the API warnings indicating
missing fields if True - defaults to False

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
create_incident(incident_type_name, incident_fields=None, incident_subtype_name=None, description=None, priority_id=None, owner_id=None)

	
	Create an incident of the desired type and subtype with the specified fields

	and description

	Parameters

	
	incident_type_name (str) – The string name of the incident type with which this
incident should be created

	incident_subtype_name (str) – The string name of the incident subtype with which
this incident should be created (optional)

	incident_fields (dict) – Key, Value pairs of fields configured in IR-Flow and
their values (optional)

	description (str) – An optional string description for the incident

	priority_id (str) – ID of the priority to set

	owner_id (str) – ID of the user to set incident owner to

	
create_object_type(type_name, type_label, parent_type_name=None, parent_type_id=None)

	Create an object type of the provided parent type or id with the provided name and label

	Parameters

	
	type_name (str) – The string name for this object type

	type_label (str) – The label for this object type

	parent_type_name (str) – The string name of the parent object type -
required if no parent_type_id is specified

	parent_type_id (int) – The id of the parent object type - required if no
parent_type_name is specified

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
create_picklist_item(picklist_id, value, label, description=None)

	Create a new item in a specified picklist

	Parameters

	
	picklist_id (int) – The IR-Flow assigned ID of the picklist to which the new item
should be added

	value (str) – The string value submitted to actions and integrations for this
picklist item

	label (str) – The label to be displayed for this picklist item

	description (str) – An optional description for this picklist item

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
delete_picklist_item(picklist_item_id)

	Mark a picklist item as deleted

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be deleted

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
download_attachment(attachment_id, attachment_output_file)

	Download the attachment with the specified ID

	Parameters

	
	attachment_id (int) – The ID of the attachment to be downloaded

	attachment_output_file (str) – The full path to the file on disk
to which the desired attachment should be saved

	
download_attachment_string(attachment_id)

	Download an attachment and return it as text

	Parameters

	attachment_id (int) – The ID of the attachment to be downloaded

	Returns

	The textual contents of the downloaded file

	Return type

	str

	
dump_request_debug_info(heading, url, headers=None, data=None, params=None)

	Helper function to dump request info to the debug stream on the logging bus

	Parameters

	
	heading (str) – A string heading for the debug message - typically the name of the
endpoint being queried

	url (str) – The full url of the API endpoint

	headers (dict) – The headers of this request, if desired

	data (dict) – Key, Value pairs of data in the body of a request, if desired

	params (dict) – Key, Value pairs of parameters passed in a request, if desired

	
dump_response_debug_info(heading, status, json)

	
	Helper function to dump response info from a request to the debug stream

	on the logging bus

	Parameters

	
	heading (str) – A string heading for the debug message, the word
‘Response’ will be appended

	status (int) – The HTTP response code of the previously made request

	json (dict) – The full json response body as returned by the IR-Flow API

	
dump_settings()

	Helper function to print configuration information

	
get_alert(alert_num)

	Retrieve the alert with the specified alert number

	Parameters

	alert_num (int) – The IR-Flow assigned alert number of the alert to retrieve

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_fact_group(fact_group_id)

	Retrieve the current data in the specified fact group

	Parameters

	fact_group_id (int) – The IR-Flow assigned IF of the fact_group to retrieve

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
static get_field_by_name(field_name, field_list)

	Helper function to return a field via a string name match given a field and field list

	Parameters

	
	field_name (str) – The string name of the desired field

	field_list (list) – A list of field objects

	Returns

	The field object if found, None otherwise

	Return type

	dict

	
get_incident(incident_num)

	Retrieve the incident with the specified ID

	Parameters

	incident_num (int) – The IR-Flow assigned ID of the incident to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_picklist(picklist_id)

	Retrieve the picklist with the desired ID

	Parameters

	picklist_id (int) – The IR-Flow assigned id of the picklist to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_picklist_item(picklist_item_id)

	Retrieve the picklist item corresponding to the specified ID

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be retrieved

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
get_version()

	Function to get Current IR-Flow Version

	Returns

	
	IR-Flow Version Number

	Example: 4.6.0

	Return type

	str

	
list_picklist_items(picklist_id, with_trashed=False, only_trashed=False)

	Retrieve a list of all picklist items in a specified list

	Parameters

	
	picklist_id (int) – The IR-Flow Assigned ID of the picklist whose items to list

	with_trashed (bool) – Include deleted items - False by default

	only_trashed (bool) – Only list deleted items - False by default

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
list_picklists(with_trashed=False, only_trashed=False)

	List all picklists

	Parameters

	
	with_trashed (bool) – Include deleted picklists - False by default

	only_trashed (bool) – List only deleted picklists - False by default

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
put_fact_group(fact_group_id, fact_data)

	Put new or updated fact data in the specified fact group

	Parameters

	
	fact_group_id (int) – The IR-Flow assigned ID of the fact_group to be updated

	fact_data (dict) – Key, Value pairs of fact fields as specified
in IR-Flow and their values

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
restore_picklist_item(picklist_item_id)

	Restore a previously deleted picklist item

	Parameters

	picklist_item_id (int) – The IR-Flow assigned ID of the picklist item to be restored

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
update_incident(incident_num, incident_fields, incident_type_name, owner_id, group_ids, incident_subtype_name=None, description=None, priority_id=None)

	
	Update the incident of the provided number, type, and subtype with the provided

	fields and description

	Parameters

	
	incident_num (int) – The IR-Flow assigned ID of the incident to update

	incident_fields (dict) – Key, Value pairs of fields configured in IR-Flow
and their values

	incident_type_name (str) – The string name of the incident type of the desired incident

	owner_id (int) – The id of the user that will own this incident

	group_ids (list of int) – The ids of the groups this incident will belong to.

	incident_subtype_name (str) – The string name of the incident subtype of the desired
incident (optional)

	description (str) – An optional string description for the incident

	Returns

	The full json response object from the IR-Flow API

	Return type

	dict

	
upload_attachment_to_alert(alert_num, filename)

	Upload an attachment to the specified alert

	Parameters

	
	alert_num (int) – The IR-Flow Assigned Alert number of the
Alert to which the desired filed should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
upload_attachment_to_incident(incident_id, filename)

	Upload an attachment to the specified incident

	Parameters

	
	incident_id (int) – The ID of the Incident to which the desired file should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

	
upload_attachment_to_task(task_id, filename)

	Upload an attachment to the specified task

	Parameters

	
	task_id (int) – The ID of the task to which the desired file should be uploaded

	filename (str) – The path to the file to be uploaded

	Returns

	The full json response object returned by the IR-Flow API

	Return type

	dict

Indices and tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

Run All API Calls

Import the irflow_client module.
import irflow_client

library used to create a unique value to pass to an IR Flow fact.
import uuid

library used to generate a datetime
import datetime

library to used print json in a readable format
import pprint

The first thing any script does is instantiate the irflow_api client library.
NOTE: We pass the configuration file to the library when we instatiate it.
The configuration file specifies the
irflow end point, user, and API Key, as well as the debug flag.

irflowAPI = irflow_client.IRFlowClient(config_file="./api.conf")
if irflowAPI.debug == "true":
 irflowAPI.dump_settings()

print ('========== Create Object Type ==========')
object_type = irflowAPI.create_object_type(type_name="createdByApi6", type_label="CreatedByAPi6", parent_type_name="alert")
if object_type['success']:
 print("Created object_type with id" + str(object_type['data']['object_type']['id']))
else:
 print("Failed to create object type")

print ('========== Attach Field to Object Type ==========')
attach_field = irflowAPI.attach_field_to_object_type('createdByApi6', 'av_detected')
if attach_field['success']:
 print("Attached field av_detected")
else:
 print("Failed to attach field av_detected")

print ('========== Create Alert ==========')
Create an Alert using the API
First set-up the alert data we want to use to create this alert with.
alert_fields = {'src_dns': 'phish.com', 'description': 'A description of the phish.'}
description = 'Super Bad API Event' # The Alert Description
Note this matches the Data Source Configuration name in IR Flow.
You will get an error if this DS Config does not exist in IR Flow.
ds_config_name = 'Phishing'
Call the irflow_api method to create an alert.
NOTE: irflowAPI is the object we created from the irflow_client. This is how all methods are called.
The call returns a json data structure (a dictionary in python)
alert_data = irflowAPI.create_alert(alert_fields, description=description, incoming_field_group_name=ds_config_name)

if alert_data['success']:
 # Now get the alert_num (The unique id used to interact with this alert through the REST API.
 # You can use this alert_num to go fetch ALL the data about an alert using the REST API
 alert_num = alert_data['data']['alert']['alert_num']
 print("Create Alert: Success")
 print("Created Alert_Num: " + str(alert_num))
else:
 print("Create Alert: Failed")

print('========== Get Alert ==========')
Now go grab the alert we just created and get all its data as a json structure,
then grab its create_at value and print it.
new_alert = irflowAPI.get_alert(alert_num)

if new_alert['success']:
 print("Get Alert: Success")
 print('Alert_Num: ' + str(new_alert['data']['alert']['alert_num']))
 # Grab the created_at field
 created_at = new_alert['data']['alert']['created_at']

 print('Created_at: ' + created_at)
else:
 print("Get Alert: Failed")

print('========== Get Fact Group ==========')
#
#
fact_group_id = new_alert['data']['alert']['fact_group_id']
fact_data = irflowAPI.get_fact_group(fact_group_id)
#
if fact_data['success']:
 print("Get Fact Group: Success")
 facts = fact_data['data']['fact_group']['facts'] # List of the facts

 print('Source DNS: ' + str(irflowAPI.get_field_by_name('src_dns', facts)['value']))
 print('Description: ' + str(irflowAPI.get_field_by_name('description', facts)['value']))
else:
 print("Get Fact Group: Failed")

print('========== Put Fact Group ==========')
Now Update the Source DNS Field
We are going to overwrite the original value of the Source DNS field with a new GUID.
new_value = 'phishing.com'
new_fact_data = {'src_dns': new_value, 'file_hash': '%s' % uuid.uuid4()}
In order to update Facts on a Alert, we have to retrieve the fact_group_id from the Alert.
Note that this call is going to override the original values we set in the create_alert call above.
update_results = irflowAPI.put_fact_group(fact_group_id, new_fact_data)

if update_results['success']:
 print("Update Fact Group: Success")
 print("Updated Source DNS to: '%s'" % new_value)
else:
 print("Update Fact Group: Failed")

print('========== Get Fact Group to See Changed Value ==========')

fact_data = irflowAPI.get_fact_group(fact_group_id)

if fact_data['success']:
 print("Get Fact Group: Success")
 facts = fact_data['data']['fact_group']['facts'] # List of the facts

 print('Source DNS: ' + str(irflowAPI.get_field_by_name('src_dns', facts)['value']))
 print('Should match Value put to fact group above ^^^^^')
else:
 print("Get Fact Group: Failed")

print('========== Upload Attachment To Alert ==========')
Now upload a file to the Alert
This image is our test image. It should appear as an attachment to the Alert.
upload_result = irflowAPI.upload_attachment_to_alert(alert_num, "./sample_image.png")

if upload_result['success']:
 print("Upload Attachment to Alert: Success")
else:
 print("Upload Attachment to Alert: Failed")

print('========== Download Attachment ==========')
Now we need to fetch the Alert Data again, so we can grab the Attachment_id of the attachment we just uploaded,
and use it to download the attachment.
alert_data = irflowAPI.get_alert(alert_num)

Note that we know there is only one attachment because we just created the alert, then uploaded a single file.
If we were worknig with an arbitrary alert in the application, we might need to search through the
list of attachments to find the right on by name.
attachment_id = alert_data['data']['alert']['attachments'][0]['id']
Download the image to a new file. They better be the same image!
irflowAPI.download_attachment(attachment_id, './downloaded_sample_image.png')

print('========== Close Alert ==========')
This first call should return success = failure, as we do not hae a close reason "Foo Bar", unless you added one!
close_response = irflowAPI.close_alert(alert_num, "Foo Bar")
if close_response['success']:
 print("Close Alert with Close Reason = 'Foo Bar' succeeded. This was not expected!")
else:
 print("Close Alert with Close Reason = 'Foo Bar' failed as expected.")

This is the close reason we added in the set-up!
close_response = irflowAPI.close_alert(alert_num, "Red Team Testing")
if close_response['success']:
 print("Close Alert with Close Reason = 'Red Team Testing' succeeded as expected.")
else:
 print("Close Alert with Close Reason = 'Red Team Testing' failed. This was not expected!")

print('========== Create Incident ==========')
Create an Incident using the API
First set-up the Incident data we want to use to create this Incident with.
incident_fields = {'time_contained': datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
description = 'Super Bad API Incident' # The Alert Description
Note this matches the Incident Type name in IR Flow.
You will get an error if this Incident Type does not exist in IR Flow.
incident_type_name = 'Phishing'
incident_subtype_name = 'Inbound Phishing'
Call the irflow_api method to create an Incident.
NOTE: irflowAPI is the object we created from the irflow_client. This is how all methods are called.
The call returns a json data structure (a dictionary in python)
incident_data = irflowAPI.create_incident(incident_fields,
 incident_type_name,
 incident_subtype_name=incident_subtype_name,
 description=description)

Now get the incident_num (The unique id used to interact with this Incident through the REST API.
You can use this incident_num to go fetch ALL the data about an Incident using the REST API
incident_num = incident_data['data']['incident']['incident_num']

if incident_data['success']:
 print("Create Incident: Success")
 print("Created Incident_Num: " + str(incident_num))
else:
 print("Create Incident: Failed")

print('========== Get Incident ==========')
Now go grab the Incident we just created and get all its data as a json structure,
then grab its create_at value and print it.
get_incident_result = irflowAPI.get_incident(incident_num)

if get_incident_result['success']:
 print("Get Incident: Success")
 print('Incident_Num: ' + str(get_incident_result['data']['incident']['incident_num']))
 # Grab the created_at field
 created_at = get_incident_result['data']['incident']['created_at']

 print('Created_at: ' + created_at)
else:
 print("Get Incident: Failed")

print('========== Attach Alert to Incident ==========')
Attach the Alert created to the new Incident
attach_alert_result = irflowAPI.attach_alert_to_incident(alert_num, incident_num)

if attach_alert_result['success']:
 print("Attach Alert to Incident: Success")
else:
 print("Attach Alert to Incident: Failed")

print('========== Update Incident ==========')
Update an Incident using the API
Update set-up the Incident data we want to use to update this Incident.
incident_fields = {'time_remediated': datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
description = 'Super Bad API Incident - Remediated' # The Alert Description
Call the irflow_api method to update an Incident.
NOTE: irflowAPI is the object we created from the irflow_client. This is how all methods are called.
The call returns a json data structure (a dictionary in python)
incident_data = irflowAPI.update_incident(incident_num, incident_fields, incident_type_name, incident_subtype_name=incident_subtype_name, description=description)

if incident_data['success']:
 print("Update Incident: Success")
else:
 print("Update Incident: Failed")

print('========== Upload Attachment To Incident ==========')
Now upload a file to the Incident
This image is our test image. It should appear as an attachment to the Incident.
upload_result = irflowAPI.upload_attachment_to_incident(incident_num, "./sample_image.png")

if upload_result['success']:
 print("Upload Attachment to Incident: Success")
else:
 print("Upload Attachment to Incident: Failed")

def test_picklist_apis(found_picklist):
 picklist_id = found_picklist['id']

 # Get the Picklist the was just found
 print('========== Get Picklist ==========')
 picklist_data = irflowAPI.get_picklist(picklist_id)

 if picklist_data['success']:
 print("Get Picklist: Success")
 print('Picklist: ' + str(picklist_data['data']['picklist']['name']))
 else:
 print ("Get Picklist: Failed")

 # Add an item to the Picklist
 print('========== Add Item to Picklist ==========')
 add_item_result = irflowAPI.add_item_to_picklist(picklist_id, 'example_value', 'Example Label')

 if add_item_result['success']:
 picklist_item_id = add_item_result['data']['picklist_item']['id']
 print("Add Item to Picklist: Success")
 print('Picklist Item ID: ' + str(picklist_item_id))
 else:
 print("Add Item to Picklist: Failed")

 # Get the Picklist Item that was just created
 print('========== Get Picklist Item ==========')
 picklist_item_data = irflowAPI.get_picklist_item(picklist_item_id)

 if picklist_item_data['success']:
 print("Get Picklist Item: Success")
 print('Picklist Item: ' + str(picklist_item_data['data']['picklist_item']['label']))
 else:
 print("Get Picklist Item: Failed")

 # Delete the Picklist Item that was just created
 print('========== Delete Picklist Item ==========')
 delete_item_result = irflowAPI.delete_picklist_item(picklist_item_id)

 if delete_item_result['success']:
 print("Delete Picklist Item: Success")
 else:
 print("Delete Picklist Item: Failed")

 # Create a duplicate Picklist Item with this picklist_id
 print('========== Create Picklist Item ==========')
 create_item_result = irflowAPI.create_picklist_item(picklist_id, 'example_value', 'Example Label')

 if create_item_result['success']:
 print("Add Item to Picklist: Succeeded unexpected. Something went wrong.")
 else:
 print("Add Item to Picklist: Failed as expected. Can't add a duplicate picklist item.")

 # Get a list of the deleted picklists
 print('========== List of Deleted Picklist Items ==========')
 list_deleted_result = irflowAPI.list_picklist_items(picklist_id, only_trashed=True)

 if list_deleted_result['success']:
 print("List Picklist Items: Success")
 else:
 print("List Picklist Items: Failed")

 # Restore the Picklist Item that was just deleted
 print('========== Restore Picklist Item ==========')
 restore_item_result = irflowAPI.restore_picklist_item(picklist_item_id)

 if restore_item_result['success']:
 print("Restore Picklist Item: Success")
 else:
 print("Restore Picklist Item: Failed")

print('========== Get List of Picklists ==========')
picklists_result = irflowAPI.list_picklists()

if picklists_result['success']:
 print("List Picklists: Success")
else:
 print("List Picklists: Failed")

Check if any picklists were found
if 'picklists' in picklists_result['data']:
 # Find the picklist with the name "New Picklist"
 picklist_name = 'New Picklist'
 found_picklist = False
 for picklist in picklists_result['data']['picklists']:
 if picklist['name'] == picklist_name:
 found_picklist = picklist
 break # Break the loop once the picklist is found

if found_picklist:
 test_picklist_apis(found_picklist)

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

CSV To Alerts

import csv
import irflow_client
import pprint
from time import gmtime, strftime

pp = pprint.PrettyPrinter(indent = 4)

irflowAPI = irflow_client.IRFlowClient(config_file="./api.conf")
if irflowAPI.debug == "true":
 irflowAPI.dump_settings()

alert_type = 'ds_test'
description = 'New CSV Alert on ' + strftime("%Y-%m-%d %H:%M:%S", gmtime())

with open('sample_csv_of_alerts.csv', 'rb') as csv_file:
 csv_reader = csv.DictReader(csv_file)
 for row in csv_reader:
 result = irflowAPI.create_alert(row, description = description, incoming_field_group_name = alert_type)
 if result['success']:
 print('Created Alert_Num: ' + str(result['data']['alert']['alert_num']))
 else:
 print('Failed to create alert')
 print('Success == ' + str(result['success']))
 pp.pprint(result)

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

API Conf Template

[IRFlowAPI]
address = <irflow IP/hostname here>
api_user = <api username here>
api_key = <api key here>
debug = true
protocol = https
verbose = 1

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

Overview

This directory contains sample scripts intended to show how to use the
irflow_client. These scripts will get you going very quickly. The
entire irflow-client API is used in the main script! Look there for
examples of any specific API Call

Examples Contents

Sample scripts

	01_run_all_api_calls.py - This script makes at least one call to
each of the API functions.

	02_csv_to_alerts.py - This script reads a csv of fact data and
creates one alert for each row in the CSV (excluding the row of
column headings).

Sample Files

	sample_image.png - This image is uploaded as an attachment in one
of the calls in 01_run_all_api_calls.py

	sample_csv_of_alerts.csv - This is a file of data, with a header
row at the top. It is used by 02_csv_to_alerts.py, and holds the
data for the Alerts created by that script.

Configuration File

	api.conf.template - This is a template file of the api.conf
required to configure the irflow_client. It hold information about
the IR-Flow instance, and how to authenticate with that instance, as
well as instructing the irflow_client if it should print debugging
information to the console.

Before You Get Started

Before you get started, there are a number of steps that you must take
to prepare IR-Flow for API calls, and configure the irflow_client so it
can connect to your IR-Flow instance. Those steps are:

	Prepare an IR-Flow user, authorized to make API calls.

	Whitelist the IP address that will be originating API calls to the
IR-Flow instance, in the IR Flow instance.

	Create Alert Objects, and Data Source Configurations in the IR-Flow
instance to receive the data sent via the API Calls.

	Create the Close Reason used by the script.

	Configure the irflow_client library

Prepare a IR-Flow user

The IR-Flow REST API requires a username and a API Key associated with
that user in order to authenticate the REST call. In addition, the user
must be a member of a group with API Read/Write to the object type they
are trying to access.

The following steps create a user.

	Login to the IR-Flow Web Application using an account with Admin
privileges.

	Navigate to the Admin Panel

	Select the Users menu, and the Users Item on that menu.

	If an user account that you want to use already exists, click edit on
that user. If it does not exist, create a user, and save it, then
edit that new user.

NOTE: IR-Flow ships with a built in account named api, and a built in
group named api. The api user is a member of the api group, and the
api group has api read and write permissions. This is the normal user
used for api calls, though there are plenty of use cases for creating
additional/different users with varying permissions.

	On the edit user screen, scroll to the API Key field.

If the user already has an API Key, that is the value that must be
placed in the api.conf configuration file on the computer that will run
the irflow_client library. If the user does nto have an API Key, click
generate to create an API Key.

	If the user is not a member of a group with API Read an Write
(depending on the API operations you intend to use), then add the
appropriate group (i.e. one with API Read/Write to the object you
will be accessing).

Whitelist the IP Address.

IR-Flow only allows API calls to be made from specific IP addresses.
These IP Addresses are white listed inside the IR-Flow Admin Panel. do
the following to white list your IP address.

	Determine the client machines IP address. If you are unable to
determine your client computers IP Address, go ahead and execute an
API Call against IR-Flow. IR-Flow will create a API Log entry showing
the IP Address it has blocked. You can find the API Log under the
Admin Panel -> API -> API Logs.

NOTE: The log screen is very wide sometimes, and you may need to scroll
to the right to see the IP Address.

	Go to the Admin Panel -> API -> API Whitelist. Click Add, and Add the
IP Address of th client computer.

Create Alert Objects, and Data Source Configurations in the IR-Flow instance.

In order to create an Alert through the REST API, you must have an Alert
Object Type and a Data Source Configuration. The Data Source
Configuration must specify the Alert Object Type as the Object Type to
use when creating the Alert.

The 01_run_all_api_calls.py and 02_csv_to_alerts.py scripts
assume that an Alert Object Type named “Test Alert” with two fields:

	Tier, as a string field.

	Risk as an integer field.

Both scripts also assume that a Data Source Configuration named
‘ds_test’ exists, and specifies the “Test Alert” object type as the
Data Source Configurations Alert Object Type.

To configure this data in IR-Flow, do the following:

	Log into the IR-Flow Web Application.

	Select App Config –> Object Types on the main menu. This brings up
the Object Types page.

You see the four base object types listed, Alert, Incident, Task and
Step. These Object Types can be extended in your IR-Flow Instance, and
new Object Types can be created that inherit from the Base Object Types.

We will create a new Object Type that inherits from the Alert Object
Type.

	Press the “+” button nex to “Alert” on the left side of the Object
Types screen. This creates a new Object Type, and names it
new_type.

	On the right side of the screen, change the label to “Test Alert”,
and the name to “test_alert”.

	Under the Fields section, click “New Field”.

	Give the new field the label “Risk”, the name “risk”, and select the
field type as Integer, then Save the field.

	Do the same to create a field with label “Tier”, name “tier”, and
type of “Test”. Save that field as well.

	Select Data Flows –> Incoming Data and Triage on the main menu.
This brings up the “Incoming Data Field Groups and Triage Steps”
screen.

	Press the “+” Add button in the upper right corner. This opens the
Add a Data Source modal.

	Type in “ds_test” for the name, and select “Test Alert” from the
Object Type drop down.

	Add another alert called “phishing” and select “Alert” from the
Object Type drop down.

	Save the new Data Source.

You have now configured IR-Flow to accept the data as the python scripts
send it.

Create the “Close Reason” used by the script

The 01_run_all_api_calls.py script uses a “Close Reason” to close
the Alert after we create it and manipulate it a little. In order for
the Close to work, that close reason must be defined in the IR-Flow
Instance. To create the “Close Reason” do the following:

	Log into the IR-Flow Web Application.

	Select App Config –> Close Reasons.

	Press the “Create” button on the upper right corner of the screen.

	Enter “Red Team Testing” for the name, fill in a description.

	Save the Close Reason.

Add fields to Alert

The 01_run_all_api_calls.py assumes the Alert object type will have
two fields, “description” and “src_dns”. Create them in the same way
you created the Tier and Risk fields on Test Alert, but this time add
them to the top level Alert.

Configure the IR-Flow Client library.

The irflow_client needs to know some information in order to connect to
your IR-Flow instance. This includes the machine name/IP address of teh
IR-Flow instance, the IR-Flow User, and the API Key for that user.

To set-up the irflow_client you must create/edit the api.conf file in
the examples directory. A template is provided for you named
api.conf.template. Make copy with the following command:

> cp api.conf.template api.conf

Your api.conf file is now the template with the following default
values:

[IRFlowAPI]
address=<irflow IP/hostname here>
api_user=<api username here>
api_key=<api key here>
debug=true
protocol=https
verbose = 1

Set the correct values for the address, user and API_key from your
IR-Flow instance. If you do not know these values, see the instructions
above.

There are two additional configurations you can change:

	debug: If true the irflow_client prints debugging information to
the console. If false, no debugging information is printed to the
console.

	verbose: An integer 0 - 2.

	0: REST Call data only: URL, Body and Headers.

	1: Also print the HTTP Response Code.

	2: Also print the HTTP Response Json.

Running the test scripts

The test scripts can run on any computer that has Python and the
irflow_client installed. irflow_client dependencies, which are
installed automatically when the irflow_client is installed.

To run the test scripts, go to a command prompt, navigate to the
directory with your copy of the test scripts, and enter the command:

> python 01_run_all_api_calls.py

or

> python 02_csv_to_alert.py

To see what the scripts are doing, go ahead and open them up. There are
plenty of comments intended to make clear what is happening in the
script.

A Couple Comments about using the irflow_client

	The irflow_client is a python module, intended to be instantiated
once, and used for multiple calls to the IR-Flow REST API.

	When the instance of the class is created, you pass irflow_client
the path to the api.conf file, and the irflow_client uses that
information for all connections.

	You use the instantiated object to make calls to the IR-Flow REST API
without worrying about the headers, gets and put, and the details of
the connection.

Happy Scripting!

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

Syncurity SDK Examples

	Overview

	Run All API Calls

	CSV To Alerts

	API Conf Template

Indices and tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

 [image: PyPI1] [image: PyPI2] [image: PyPI3]

irflow-sdk-python

A python client for Syncurity IR-Flow REST API

Installation

pip install irflow_client

Upgrade

pip install irflow_client --upgrade

Build from source

git clone git@github.com:Syncurity/irflow-sdk-python.git
pip install -e .

Contribute

Pull requests are always appreciated

Support

Please open an issue in github

Examples

To get started with examples, read the examples README. It includes two
sample python scripts that use the irflow_client.

Indices and Tables

	Index

	Module Index

	Search Page

	IR-Flow Client

	Syncurity SDK Examples

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Syncurity SDK’s documentation!

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

